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Abstract 
It is shown that the relations which define the para-Fermi creation and annihilation 
operators bi, a~ (i = 1 . . . .  ,n) can be considered as commutation relations of the algebra 
O(n, n + 1). It  turns out that every representation of O(n,n + 1) determines a representation 
of the para-Fermi algebra and vice versa. 

In the present note we prove that the relations which define the para- 
Fermi creation and annihilation operators bt, at (i = 1 , . . . ,  n) are nothing 
but the commutation relations of the algebra O(n,n + 1), considered in a 
realisation where also an associative multiplication between the elements of 
0(n,n § 1) is defined. We show that the para-Fermi operators are part of the 
generators of0(n, n + 1) which define uniquely the algebra. As a consequence 
it turns out that every representation of the para-Fermi algebra defines a 
representation of the algebra O(n,n + 1) and vice versa. 

Consider the set of 2n 2 + n entities G = (at ,b t ,c ts ,  dts, ei j /dts = -ds~,  
e t j - - - - e j~ ,  i , j  = 1 . . . . .  n)  and let q~ be an arbitrary field. Denote by ~7. the 
2n 2 + n dimensional vector space spanned on the elements of G over ~. For 
arbitrary a, b, c ~ [7, and =,/3 e ~ define a bilinear antisymmetrical law of 
composition [a,b] ~ U,,, i.e. 

[=a +/3b, c] = =In, c] + fl[b, c] (1) 
[a, b] = -[b, a] 

by the following relations:* 

[at, bs] = cis, [at, as] = d,j ,  [bf,bs] = e i j  

[cts, ak] = 23,s at (2a) 

[cts, bk] = --23tk b s 

[ets, ak] = 23jkbt  -- 23tkbs 

[dis, bk] = 23jk at --  23tk as (2b) 

[dis, ak] = [ets, bk] = 0 

* U n l e s s  o t h e r w i s e  s t a t e d ,  t h e  l o w e r - c a s e  i nd i ce s  r u n  f r o m  1 t o  n.  
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[clj, ck~] = 23jk eu - 28~i ckj 

[cij, du] = 23j1 du - 28jk d .  

Ices, e~z] = 23//ejk - 23~k el~ (2c) 
[dij, eu] = 28~k Ciz + 28U Cjk -- 28ik CjZ -- 23n Cik 

[d,j, dk,] = [el j, ek,] = 0 

One can easily verify that with respect to the composition (2) the Jackoby 
identity holds, so that U. is a Lie algebra. It is convenient to embed ~7. into 
an associative algebra V., so that the composition law of ~7. in I1. will have 
the usual form of a commutator, that is, 

[a, b] = ab - ba a, b ~ U. (3) 

Denote by V. the associative algebra of  all polynomials of the elements from 
G in which the relations (2) with commutator defined as (3) hold. The 
algebra V. is a factor algebra of  the free-associative algebra of  the set G with 
respect to the ideal generated by the relations (2) [for more complete 
discussions see Doebner & Palev (1970)]. The algebra 1I. contains a Lie 
isomorphic image U. of ~.. To obtain this it is enough to consider the 
abstract composition law (2) as a commutator defined by (3). 

The commutation relations (2c) in U. are consequences of  the relations 
(2a) and (2b). Inserting (2a) in (2b) we obtain the following relations: 

[[ap, ba], a,] = 23a, ap 

[[ap. b~]. b.] = -28p~ b~ 

[[bp, b.], ar] = 2(3~. bp - 3pr ba) (4) 
[[a,. aq]. br] = 2(3.. a,  - 3p. a,) 

[[a., a.], at] = [[b., b.], b.] = 0 

We observe that the equations (4) are not only simple consequences of the 
relations (2), but also they are enough to restore the commutation relations 
(2), that is, they define uniquely the Lie-algebraic structure in U.. In these 
notations the algebra U. is spanned on the following 2n2§ n linearly 
independent elements: 

a .  b,, [a .  b j], [ap, a,], [b., b,] p < q (5) 

The entities as, bz which satisfy the equations (4) were first introduced by 
H. S. Green (1953). They are called para-Fermi annihilation and creation 
operators. Therefore we call the Lie algebra U. para-Fermi algebra. This 
algebra is the minimal Lie sub-algebra of  the infinite dimensional associative 
algebra V,. considered as a Lie algebra which contains the para-Fermi 
operators. We shall show that the real para-Fermi algebra U. is isomorphic 
to the algebra O(n,n + 1). In this way we shall prove that the relations (4), 
which serve as a definition of  the para-Fermi operators, are nothing but 
the commutation relations of0(n,n + 1). 
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We first prove that U. is a simple Lie algebra. From this result it follows 
that the complex para-Fermi algebra is isomorphic to one of the classical 
algebras B. or Ca, since they are the only complex simple Lie algebras of 
dimension 2n z + n (up to isomorphisms for n = 1, 2, 3) [see for instance 
Pontrjagin (1958)]. 

Lemma. The para-Fermi algebra U. is a simple Lie algebra. 

Proof Denote by U. 1 and U. z the subspaces of U,, spanned on the operators 
at, bj and [a. b j], [a.  a j], [b. b j] correspondingly. Then the equations (4) give 

[U. l, U. 2 ] = Ufl (6) 

Let r be an arbitrary nonzero element from U. and let Jr be the Lie ideal 
generated by r. Take the element al. From the relations [see (4)] 
[[al,bl],b~] = -261, [[aj, bl],al] = 2aj and [[bj, bl],al] = 2b j, it follows that 
Yal contains all para-Fermi operators and hence all generators (5) of U.. 
Thus Yal = U.. In a similar way one can prove that Ja~ = Jb~ = Ua. Therefore 
for any 0 # r ~  U. we have U. = Jrl. Let O # rz ~ U. 2. Then [rz, Un 1] ('1 
U. 1 # 0 and hence Jr~ = U.. For an arbitrary r = rl + rz, ri r U. t, rt # 0, 
i = 1, 2, U. a r [rl + rz,r2] # 0. So we obtain: 

J~=U.  r # O  (7) 

We have shown that the intersection of all ideals which contain an arbitrary 
nonzero element r ~ U. coincides with U.. Hence the para-Fermi algebra U. 
contains no nontrivial ideals, i.e. it is simple. 

The only complex simple Lie algebras of dimension 2nZ+ n are the 
classical algebras B. and C.. Therefore the real para-Fermi algebra is 
isomorphic to one of the real forms of these algebras. It turns out that 
(~ denotes isomorphism) 

u.  ~ 0(n, n + 1) (8) 

and to prove this we construct the isomorphism in an explicit form. 
First we introduce some convenient notations and choose a proper basis 

in O(n,n + 1). Let/3 be a square 2n + 1-dimensional diagonal matrix with 
n(n + 1) elements equal to 1 (-1). We put / 1 / 

-1  
1 

/3= - 1  
" . ~  

1 
-1 

-1 

(9) 
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The algebra O(n,n + 1) can be defined as the set of all square 2n + 1- 
dimensional matrices y which satisfy the matrix equation [see for instance 
Helgason (1962)] 

"r 

Vfl + fly = 0 r-transposition (10) 

Denote by es' (r, s = 1 , . . . ,  2n + 1) a square 2n + 1-dimensional matrix with 
all elements equal to zero except the element on the cross of the rth row and 
sth column which is equal to 1. Then it is possible to choose the following 
basis in the matrix representation defined by equation (10) of 0(n, n + 1): 

f f  _ o 2 p - i  A_ ~ 2 n + l  f2 p 2p ,,~2n+l 
- -  ~ 2 n + l  T v 2 p - 1  ~ e 2 n + l  - -  ~2p 

f 3p o 2 p - I  2p f4 w ,~2q ~2p § e 2 p - i  ~--- ~-2p - -  ~2q w2p 

fspq . 2 p - i  § 2t/ f6pq .~2p-1 ,o2q-1 (11) ~2q e 2 p - I  ~--- ~ 2 q - 1  - -  ~-2p-1 

f7pq 2p A- a2q--1 e2 t / -1  T ~2p 

wherep, q = 1 , . . . ,  n andp < q. Introduce also a new basis in the para-Fermi 
algebra U, (p < q ; p ,  q =  1 , . . . ,  n): 

= + b p )  

g 2  = � 8 9  - 

g3 p = �89 b.] 
g4 p~ = �88 a~] + [bp, b~] - [ap, b~] + [aq, bp]) (12) 
g5 p~ = �88 a~] + [bp, be] + [a~, bq] + [a~, bp]) 
g6 p~ = �88 a~] + [bp, b.] + [a~, b,] - [ao, b~]) 

~([ p, a~] - [bp, bq] + [ap, b~] + [a~, bp]) g7p~  = 1 O 

In these notations the one-to-one linear mapping 0 of the real para-Fermi 
algebra onto 0(n,n + 1), which preserves the commutation relations, can be 
defined in the following way (i = 1, 2, 3 ; j  = 4, 5, 6, 7) 

Og, p = A  p, Og~" = f ~  (13) 

One can verify this by simple, but rather long, calculations using the 
equations (4) and the commutation relations [ej t, el ~] = 3jk ez ~ -- 3 .  eft. Thus 
we have proved the following theorem: 

Theorem. The real para-Fermi algebra U,, is isomorphic to the algebra 
O(n,n + 1). Over the field of the complex numbers U. is isomorphic to the 
algebra B.. 

The compact real form 0(2n + 1) of B. is spanned on the elements 
i"f.  (n = 1, . . . ,  7). 

From the theorem we can draw some important conclusions concerning 
the representations of the para-Fermi operators. The mapping r:a~ --~ A~, 
b~ ---> B~ of a~, b~ onto a set A~, B~ of linear operators in a Hilbert space 
defines a representation of the para-Fermi operators if Af, B~ satisfy the 
equations (4) with commutator (3). In this case the operators 

A, ,B , , [A .B j] , [Ap ,  A.],[Bp, B~] p < q  (14) 
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span a basis of a representation of O(n,n + 1). On the contrary. Let the 
mapping ~- define a linear representation of the algebra O(n,n + 1). Denote 
by A~, Bi, C~j, D~j and Eij the images of the generators of the algebra under ~- 
which are chosen to satisfy the commutation relations (2). Then the 
operators A~ = ~-a~, B~ = "rb~ give a representation of the para-Fermi algebra. 
Moreover, because of (14) the representation of the para-Fermi algebra and 
of 0(n, n + 1) which correspond to each other are simultaneously reducible 
or irreducible. Thus we have deduced the following corrolary of the 
theorem. 

Corollary. The operators A~, B~ (i, j = 1 . . . . .  n) define an (irreducible) 
representation of the para-Fermi operators az, bj if and only if the operators 
(14) span a basis of an (irreducible) representation of the algebra 0(n, n + 1). 

In this way the problem to find all representations of the para-Fermi 
operators reduces mainly to the determination of the representations of the 
classical algebra O(n,n + 1). 

In conclusion we want to point out that the isomorphism between U, and 
O(n,n § 1) does not depend on the order of the para-statistics of the para- 
Fermi operators. The representations of any order of para-statistics (in 
particular of the Fermi creation and annihilation operators) are contained 
among the representations of 0(n, n § 1). The set S of all representations of 
the para-Fermi operators with arbitrary order of the para-statistics does not 
exhaust all representations since S contains only a countable set of finite- 
dimensional representations, whereas the class of the representations of the 
algebra O(n,n + 1) is non-countable and contains also infinite-dimensional 
representations. 
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